Mathématiques

Question

SABCD est une pyramide à base rectangulaire de centre H et de hauteur [SH].
on donne : AB = 6,4 cm BC = 4,8 cm SH = 7,5 cm.
1.Calculer le volume de cette pyramide. (le volume est de 49,152)
2.Calculer AC. En déduire HC. (AC = 8 cm et HC = 4 cm).
3.Calculer la longueur de l'arête latérale [SC].

Pouvez vous m'aider pour la question 3 svp ?

1 Réponse

  • 1. Volume d'une pyramide = 1/3 x longueur x largeur x hauteur
    = 1/3 x 6,4 x 4,8 x 7,5
    = 76,8 cm3

    2.
    [tex] AC^{2} = AB^{2} + BC^{2} \\ AC^{2} = 6,4^{2} + 4,8^{2} \\ AC = \sqrt{40,96 + 23,04} \\ AC = \sqrt{64} \\ AC = 8 cm \\ [/tex]

    HC = AC / 2
    HC = 8 / 2
    HC = 4 cm

    3.
    [tex] SC^{2} = SH^{2} + HC^{2} \\ SC = \sqrt{56,25 + 16} \\ SC = 8,5 cm \\ [/tex]



Autres questions